抽象的

A new approach to bacterial foraging optimization based on evolution strategies

Feng Xiaohua, He Yuyao, Yu Juan


Bacterial Foraging Optimization Algorithm (BFOA) is inspired by the social foraging behaviour of Escherichia coli. Although the BFOA has successfully been applied to many kinds of optimization problems, experimentation with complex problems reports that the basic BFO algorithm possesses a poor performance mainly because of its constant chemotactic step. In this paper, a new self-adaptive approach to BFO based on ES (ESABFO) is proposed. In the proposed algorithm, each bacterial decides the step size C on the basis of the objective function value. When it is far away from the best objective, the step size C is large. Otherwise, the step size C is small. In this way, the step size C can be regarded as an evolution progress with self-adaptive adjusting. And it can keep right balance between an exploration of the whole search space and an exploitation of the promising areas. In order to prove the validity of the ES-ABFO, two experiments have been done for a set of benchmark functions and then they have been compared with basic BFOA. The performance comparisons indicated that the ES-ABFO is capable of alleviating the problems of premature convergence in BFO. And it is suitable to solve the complex optimization problems.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • 欧洲酒吧
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer