抽象的

A novel T-FGM (1,1) forecasting model based on rbf neural network for water demand forecasting

Xinjun Wang


In order to forecast the water demand and enhance the utilization of water resources, based on the basic principle of Grey Model with First Order Differential Equation and one Variable (GM(1,1)), in this paper, a novel First-entry traversal Grey Model with First Order Differential Equation and one Variable (T-FGM(1,1)) was established byminimumtotal residual sum of square. Furthermore, A T-FGM(1,1)( First-entry traversal Grey Modelwith FirstOrderDifferential Equation and oneVariable)-RBF ( radial basis function) neural network model is established. The proposed model not only educes the unstable factors that influence the forecast, but also can interfuse the advantages in the uncertainty domain in neural network.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer