抽象的

A study of X-ray machine image local semantic features extraction model based on Bag-of-Words for airport security.

Ning Zhang, Jinfu Zhu


The aviation security at the airport has been faced with increasingly severe situations since the 9-11 event. It’s of utmost importance to train airport X-ray machine screeners image recognition competency. So they can prevent terrorists from bringing dangerous articles in their carry-on or checked bags. However, usually the luggages are placed in different positions and the density & volume of articles differ greatly. As a result, dangerous articles show a variety of X-ray image features. It’s easy for the confused screeners to miss or incorrectly detect dangerous articles. This has been a hidden danger for civil aviation safety. For image recognition improvement, the researcher analyzed the visual semantics of dangerous goods images and applied a local semantic features extraction method. After classification and summarization, the method was used to train the screeners for particular image recognition. The comparison showed the improved accuracy and efficiency of image recognition for the screeners and demonstrated a satisfactory effect.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • 欧洲酒吧
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer