抽象的

A tutorial to solve the 'free' two-body binary pulsar celestial mechanics problem

Paul A.Murad


The ‘captured’ 2-body Kepler problem usually requires bodies that have a large difference between their separate masses. The larger body is usually assumed centrally located that influences a smaller satellite body. In binary pulsar orbits, the two bodies may have similar masses as ‘free’ bodies to generate separate orbits. These bodies with similar weights that may produce highly elliptical trajectories while other pulsar binaries with different weights produce near circular orbits; clearly this behavior is counter-intuitive. Consequences of these orbits are either premature or that the neutron star may alter gravity due to excessive axis rotation. Closed-form solutions are presented for the ‘free’ two-body problem. Results indicate that the eccentricities for binaries may be different with each of these ‘free’ orbits. Moreover, there is a correlation that relates eccentricities, to the mass of the binaries, the type of trajectories as well as a function of the neutron star’s rotation rate. If this is the case, there is a possibility that angular momentum may play a role in gravitation.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 米亚尔
  • 秘密搜索引擎实验室
  • 欧洲酒吧
  • 巴塞罗那大学
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer