抽象的

Adsorption of a Cationic Dye from Aqueous Solutions by using Waste Glass Materials: Isotherm and Thermodynamic Studies

Zainab A. Hadi, A. M. Aljeboree and A. F. Alkaim


Waste glass materials (WG), from Pepsi Cola solid wastes (PCSW), may be used as a sorbent for textile dyes removal from industrial wastewaters such as methylene blue (MB). In order to obtain the adsorption mechanism, adso rption processes were studied with Fo urier transform infrared spectroscopy. The effect of various parameters like concentration, initial solution pH, particle size, mass dosage and temperature has been studied. Increasing the concentra tion of the adsorbent promoted an increase in the percentage of removal until saturation of the adsorbent. Also increase in pH of solution gives better adsorption. However, it is also observed that percen t saturation of adsorption d ecreases with increase in particle size of adsorbent. The experimental isotherm data were analyzed using Langmuir, Freundlich, and Temkin models. Within the studied range of dye concentrations, the adsorption equilibrium was found to follow the Langmuir isotherm model well, with R 2 > 0.99. The dimensionless factor, R L of the methylene blue, WG isotherm revealed that the adsorption process is favourable in nature. A full thermodynamic evaluation was carried out, calculating the para meters of enthalpy, fr ee energy, and entropy ( ∆ H , ∆ G , and ∆ S ). The thermodynamics of MB onto WG system indicates spontaneous and endothermic nature of the process. The efficiency of WG for the spontaneous and endothermic adsorption of MB dye is attributed to the copious availability of hydroxyl and other polar functi onal groups on the oxygen surface. The present adsorption studies of MB dye from aqueous solution revealed the potential of WG to be utilized as an alternative, inexpensive, and environmentally benign adsorbent for water purification.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer