抽象的

An artificial neural network for prediction of thermodynamic properties; Case study: saturated and superheated water

Abdolreza Moghadassi, Fahime Parvizian, Sayed Mohsen Hosseini, Seyyed Jelaladdin Hashemi


Water is an important natural fluid that plays significant roles in many processes. Consequently, knowledge of the thermodynamic properties of water is necessary for the interpretation of physical and chemical processes. In this work a new method based on artificial neural network (ANN) for prediction of water thermodynamic properties such as specific volume, entropy and enthalpy for both superheated and saturated regions has been proposed. The needed data is taken from steam tables[PerryÂ’s Chemical Engineering Handbook]. The accuracy and trend stability of the trained networks, were tested against unseen data their. Different training schemes for the back-propagation learning algorithm, such as; scaled conjugate gradient (SCG), Levenberg-Marquardt (LM), gradient descentwithmomentum(GDM), variable learning rate back propagation (GDA) and resilient back propagation (RP) methods were used. The SCG algorithm with seven neurons in the hidden layer shows to be the best suitable algorithmwith theminimummean square error (MSE) of 0.0001517. TheANNÂ’s capability to predict thewater thermodynamic properties is one of the best estimating method with high performance.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 米亚尔
  • 秘密搜索引擎实验室
  • 欧洲酒吧
  • 巴塞罗那大学
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer