抽象的

Application of covariance cross in distributed sensor network positioning

Xiang-Yang Chen


Node localization accuracy in many applications in a distributed sensor network plays a vital role. Currently positioning method is more concerned mainly include TDOA and RSS. These two methods are non-independent and positioning accuracy susceptible to noise. If using the traditional manner fusion Kalman filter data, you can reduce the estimation error. But assumes zero covariance between data, so the results are not conservative and reliable. This article will cross covariance data fusion algorithm is applied to such problems, namely in the Poisson distribution and uniform distribution of node localization process distributed sensor network to be simulated. The results show that the algorithm is more reliable crosscovariance and improves positioning accuracy, ideal for distributed sensor networks.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • 欧洲酒吧
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer