抽象的

Application of learning vector quantization neural network in the financial failure prediction

Ying Feng, Caiqin Zhao


Effective prediction of financial failures has been of great importance to Chinese listed companies because it can exert a big influence upon financial decisions to be made by investors, creditors and banking officers. For this purpose, neural network method has been introduced, and it has become a hot spot in this domain. LVQ (LearningVector Quantization) neural networkmethod is adopted to set up a prediction model of financial failure in accordance with latest financial data of 14 listed companies. Repeated training and learning of the sample brings LVQ out.Acomparison between LVQ and traditional BP (Back Propagation) has proved that LVQ algorithmhas a higher prediction accuracy, which indicates that LVQ neural network method will enjoy good application prospect in the field of financial failure prediction.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer