抽象的

Application of successive projections algorithm on spectral monitoring of rice leaves nitrogen contents

Ming-Bo Liu, Yan-Lin Tang, Xiao-Li Li, Jia Lou


Visible-NIR reflective spectrum was used to predict the nitrogen contents of rice leaves. Different preprocessing methods were used in pretreatment of the original spectra. The effective wavelengths were selected by successive projections algorithm (SPA) for original spectra and pretreated spectra.Multiple linear regression (MLR) models and Partial least squares regression (PLS) models were built respectively. SPA could reduce the dimensions of spectralmatrix efficiently. In the models established on SPA effective wavelength,MLR model and PLSmodel based on multiplicative scatter correction (MSC) pretreated spectrum had the best predicting effect with r=0.7943 and RMSE=0.4558. In PLS models established on all wavelengths, the best predicting effect model was that based on MSC pretreated spectrumwith r=0.8470 and RMSE=0.3953.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer