抽象的

City innovation capability evaluation method based on support vector machine

Yong-li Zhang, Yan-wei Zhu


China will develop into an innovative country in 2020. It has become an important topic that study on evaluation method of innovation ability. But the science and technology innovation capacity determination is complex, there are many factors affecting the innovation ability, there are a non-linear relationship, uncertainty and ambiguity. Support vector machine is a statistical learning method based on small samples, using structural risk minimization principle, and it is good generalization ability. This paper uses support vector regression algorithm to evaluate the ability of innovation of science and technology, get the support vector machine regression model, Through the 2013 yearbook data analysis of the experimental results, this method is achieved very good results in evaluation of regional innovation capacity.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • 学术文章影响因子(SAJI))
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer