抽象的

Comparison between 2D and 3D Transient Flow Simulation of Gas Liquid Dynamics in Two-Phase Cylindrical Bubble Column Reactors by CFD

M. A. Salehi and R. Rahimi


In this research paper, we evaluated the applicability of using computational fluid dynamics (CFD) to simulate a transient, two-dimensional axisymetric and three-dimensional dynamic Eulerian- Eulerian two-phase model and for the modeling of bubble column hydrodynamics in the homogeneous flow regime. A two fluid model along with the standard k-- model for turbulence in liquid phase is considered. Further numerical studies investigate the influence of additional turbulence production through the dispersed gas phase. The experimental data, with reference to the works literature experimental data of Dudukovic et al. (1999) that was obtained via Computer Automated Radioactive Particle Tracking System (CARPT) and Pleger et al. (2001) works literature that was obtained via particle image velocimetry, allow for the validation of the model simulation. The comparison between experimental data and CFD modeling focus on the local axial liquid velocity. The simulations are done using Fluent CFD software. Reasonably good quantitative agreement is obtained between the experimental data and simulations profiles defined points. Also these results will expect for the turbulent kinetic energy and the other variables profiles. Employing finer grids improves the description of the flow structure in the bubble column and the agreement with the experimental data. However, the computation power increases significantly and a compromise between efficiency and quality of results has to be found.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 米亚尔
  • 秘密搜索引擎实验室
  • 欧洲酒吧
  • 巴塞罗那大学
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer