抽象的

Credit risk classifications of e-commerce based on KPCA-MPSO-ANN

JianpingWu , Bangzhu Zhu


The paper attempts to classify E-commerce credit risk in a clearer way by adopting KPCA, MPSO and ANN. In the KPC classification, the data was pre-processed in the first place, and then the eigenvalues and eigenvectors were extracted to reduce the dimensions of the E-commerce credit risk. Furthermore, the study searched the inertia weight and threshold of BP neutral network through the improved MPSO, and determined the inertia weight and threshold value BP neural network. The data of 13 enterprises was trained first, and that of another 5 enterprises was tested and predicted. And finally, the result was classified. The study proved that the KPCA-MPSO-ANN based analysis was quite effective, providing a sound basis, reference and empirical case for classification and evaluation of E-commerce enterprises. Besides, it is of some help to promote the development of E-commerce industry.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • 欧洲酒吧
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer