抽象的

Effect of Sintering Method on Corrosion Resistance of Ti-40Nb-15Zr Alloy for Biomedical Applications in Simulated Body Fluid

Jianming Ruan, Taomei Zhang, Baoqi Wang, Hailin Yang and Wei Ruan


Ti-40at.%Nb-15at.%Zr (TNZ) alloy was prepared by high vacuum sintering(HVS) and spark plasma sintering (SPS) using Zr, Nb, and Ti elemental powder. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) and electrochemical measurement were used to character the corrosion resistance of the alloys in Hank’s solution. The results indicated that HVSed alloy was consisted of α and β, and the SPSed alloy was characterized by rich-Nb phase and less porosity. Additionally, the SPSed alloy has the lower corrosion current (Icorr) value 0.026 µA/cm2 than Ti-6Al-4V and HVSed alloy which were 0.043 µA/cm2 and 0.032 µA/cm2, respectively. The SEM results of the samples after immersion in the Hank’s solution for 72 hours showed that the corrosion of the SPSed alloy started in the rich-Nb region, and that of the HVSed alloy firstly occurred at the interface of the two phases (α and β). Furthermore, the EIS results demonstrated the existence of a duplex film consisting of an inner barrier layer and a porous outer layer on both Ti-6Al-4V and SPSed alloys.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer