抽象的

Experimental Sensor Characterization

Sands T


Spacecraft use accelerometers to measure acceleration (changes in speed), so the spacecraft can know things like when it has fired its engines long enough. Thus, accurate modeling and characterization of the accelerometer are very important features of any space mission, especially since it involves fuel consumption (currently an unreplenishable asset in space). Accelerometers are particularly useful for guidance, navigation and control. Simple control algorithms begin by using the governing physics expressed in mathematical models for control, but usually more advanced techniques are required to mitigate noise, mismodeled system parameters, of unknown/un-modeled effects, in addition to disturbances. This research describes methods utilizing LabVIEW software and a myDAQ device, a low-cost data acquisition (DAQ) device that gives students the ability to measure and analyze live signals from Bosch BMA145 accelerometers, both signals and noise. Accelerometer characterization is key to the success of any space mission. This tutorial instructs the reader how to setup the experimental test hardware and characterize an accelerometer and then proceeds to analyze the noise, permitting the utilization of the accelerometer for free fall utilizing a novel algorithm that is a natural extension of the experiments used for accelerometer characterization and noise analysis.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer