抽象的

Exploring the Potential of a New 1,2,4-Triazole Derivative for Corrosion Protection of Carbon Steel in HCl: A Computational and Experimental Evaluation

Manal Naciri, Yasmina El Aoufir, Hassane Lgaz, Fatima Lazrak, Ahmed Ghanimi, Abdallah Guenbour, ismat H. Ali, Mouloud El Moudane, Jamal Taoufik, Ill-Min Chung


Carbon steel is a commonly used alloy in petroleum refining equipment. Nonetheless, its weak corrosion resistance is a perpetual problem for these industries. In the present study, we manifest the usefulness of a novel 1,2,4-triazole derivative, namely 5-hexylsulfanyl1,2,4-triazole (HST) in inhibiting the carbon steel (CS) corrosion in 1.0 M HCl using mass loss measurements, electrochemical, scanning electron microscopy coupled with X-ray detection (SEM-EDX), X-Ray diffraction (XRD) and computational techniques. We deduced from the gravimetric study that the optimal concentration of HST is 10-3 M. Its inhibition efficiency can reach 97% based on electrochemical data. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) results suggest an increased impedance in the presence of HST and mixed nature of inhibitor action, respectively. The compound HST mitigates corrosion at the temperature range of 298K-338K, with an inhibition efficiency of 89% at 338K. Free Gibbs energy obtained from the Langmuir isotherm model suggests that the inhibitor molecules hinder the acid attack mainly by chemisorption. A computational study based on Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations was performed in an attempt to identify the factors most associated with anti-corrosive properties of the tested compound. Keywords: Corrosion inhibition; Mild steel; 1,2,4-triazole; Molecular dynamics; DFT; SEM/EDX.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 宇宙IF
  • 日内瓦医学教育与研究基金会
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数