抽象的

Fabrication and Characterization of Organic Light Emitting Diode Using FTO/Pentacene as Bilayer Anode

Saikia D* and Sarma R


Pentacene films on FTO surface for affecting the hole injection probability in Organic Light Emitting Diode (OLED) has been investigated. Five kinds of organic light emitting diodes with tris (8-hydroxyquinoline) aluminium (Alq3) as emitting layers were fabricated. It was found that hole injection is directly affected by the different thickness of pentacene films on FTO surface. The OLED device with FTO/pentacene (6 nm) anode shows better device efficiency compared with bare FTO anode and that of other thickness of pentacene films. Enhanced device performance is due to the better surface morphology with large hole mobility, and highest figure of merit (FOM) value of FTO/pentacene (6 nm) bilayer anode combination. In this work N, N’-bis (3-methyl phenyl)-N, N’ (phenyl)-benzidine (TPD) used as hole transport layer and lithium fluoride (LiF) are used as electron injection layer. Our result suggests that the FTO/pentacene (6 nm) anode is an excellent choice to enhanced the hole injection in OLED devices. Here, we obtained maximum value of current and power efficiency are 6.6 Cd/A and 3.4 lm/W respectively.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer