抽象的

Formation energy investigation of mono vacancy defects for CBNNTs

A.A.El-Barbary, Kh.M.Eid, M.A.Kamel, M.M.Hassan


We present a theoretical study of the formation energies of monovacancy defects ofCBNNTs(1:5) (BN/Cwith ratio 1/5).We have considered a range of different nanotube diameters and chiralities, as well as different arrangements of Cand BN.Applying B3LYP/6-31g(d,p)with using density functional theory (DFT), three distinct structural combinations of carbon nanotubes (CNTs) and boron-nitride nanotubes (BNNTs) have been investigated in order to model carbon boron nanotubes (CBNNTs): BNrandomdistribution, BN-rowdistribution, and BN-zigzag distribution.We have shown for first time a detailed study of formation energies of the monovacancy defects in CBNNTs can be altered depending on the position of the removing carbon atom rather than their diameters and chiralities. The smallest formation energies are obtained when the carbon atom is removed close to a nitrogen atom, however the highest formation energies are obtained when the carbon atom is removed close to a carbon atom. This work may allow the fundamental control needed for designing nextgeneration electronic components of CBNNTs.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer