抽象的

Glass insulator recognition based on HSL color space and SIFT matching

Yongjie Zhai, Yang Wu, Haiyan Cheng, Zhenbing Zhao


This paper presents a method for recognizing glass insulators in aerial images from helicopter patrolling of power lines, in order to improve work efficiency, compared with manual inspection. This technique works by rough location and local recognition. In rough location, the hue and lightness components in HSL color space were extracted initially to segment with their relevance to glass characteristic, instead of traditional algorithm in RGB model. And insulators are roughly located by morphology, connected components analysis. Then, we select sub-modules from insulator samples, using hierarchical clustering based on SIFT matching rates and recognize insulators locally by matching method. Some experiments on aerial images indicate that our approach avoid requirements of mass high-quality samples and shows significantly improved performance on detection accuracy.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • 欧洲酒吧
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer