抽象的

Graph kernels and applications in protein classification

Jiang Qiangrong, Xiong Zhikang, Zhai Can


Protein classification is a well established research field concerned with the discovery ofmoleculeÂ’s properties through informational techniques. Graphbased kernels provide a nice framework combining machine learning techniques with graph theory. In this paper we introduce a novel graph kernel method for annotating functional residues in protein structures.Astructure is first modeled as a protein contact graph, where nodes correspond to residues and edges connect spatially neighboring residues. In experiments on classification of graphmodels of proteins, themethod based onWeisfeiler- Lehman shortest path kernel with complement graphs outperformed other state-of-art methods.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer