抽象的

Hybrid quantum-behaved particle swarm algorithm for nonlinear complementary problems

Tiefeng Zhu, Xueying Liu


Combining amultiplier penalty functionmethod of dealingwith constraints using the quantumparticle swarmoptimization (QPSO) algorithm, a hybrid QPSO algorithm is proposed for solving nonlinear complementary problems. This method utilizes the advantages of the QPSO and the multiplier penalty function method. The non-feasible particles produced in the iterative process are dealtwith using the multiplier penalty function method to produce feasible particles. Numerical experiments show that the proposed algorithm is effective.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • 学术文章影响因子(SAJI))
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer