抽象的

Improvement of genetic algorithm and its application in optimal control of intersections

Nan Ji1, Jie Zhang, Yingna Zhao


In this paper, average vehicle delay time is used as objective function to evaluate the performance of intersection signal control. Through the evolution process of dynamic adjustment in the population fitness the value of crossover probability and mutation probability of the maximum individual, then realize the improvement of genetic algorithm, effectively avoid the premature phenomenon. The simulation experiments show that the method is an effective and reliable method


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 米亚尔
  • 秘密搜索引擎实验室
  • 欧洲酒吧
  • 巴塞罗那大学
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer