抽象的

Manoeuvering electrical & thermal parameters of carbon nanotubes

Neeraj Jain


Carbon nanotubes have shown great promise as a new class of electronic materials owing to the change in their properties with chirality of the nanotube. On one hand, they can rival the best metal and on the other, a semiconducting nanotube can work as a channel in a nano Field effect transistor. Carbon nanotube (CNT) bundles are being considered for future VLSI applications due to their superior conductance and inductance properties which are important parameters while considering anymaterial for an interconnect or via applications. In this paper, we report the variation in electrical and thermal conductance as well as inductance of a CNT with its geometrical features using a diameter dependentmodel.Also the dependence of conductance and inductance of a CNT on the type of nanotubes, tube length and tube diameter has been studied. As we know that at nanometre scale, the electrical and thermal transport properties of the components become extremely important with regard to the functioning of the device and it is very difficult to accurately measure these properties, therefore predictions using modeling and simulation play an important role in providing a guideline for design and fabrication of CNT interconnects and understanding the working of various CNT based devices.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer