抽象的

Materials Design and Preparation for Advanced Electrochemical Storage

Jim Brown


To meet the world's growing energy demand while protecting the environment, the world's reliance on nonrenewable energy sources must be drastically reduced. The ability to efficiently convert, store, transport, and access energy in a variety of ways will be at the heart of this effort. Batteries for small consumer devices have saturated society; however, if they are to be useful in large-scale applications such as automotive transportation or grid-storage, new materials with dramatically improved performance will be required. Efforts must also focus on the use of Earth-abundant and nontoxic compounds to ensure that any developments do not create new environmental problems. To meet the world's growing energy demand while protecting the environment, the world's reliance on nonrenewable energy sources must be drastically reduced. The ability to efficiently convert, store, transport, and access energy in a variety of ways will be at the heart of this effort. Batteries for small consumer devices have saturated society; however, if they are to be useful in large-scale applications such as automotive transportation or grid-storage, new materials with dramatically improved performance will be required. Efforts must also focus on the use of Earth-abundant and nontoxic compounds to ensure that any developments do not create new environmental problems. We describe how the open-circuit voltage of Li-ion batteries can be manipulated and optimised through structural and compositional tuning by taking advantage of differences in electronegativity among possible electrode materials. We then discuss which modern synthetic techniques are the most sustainable, allowing the creation of new materials through environmentally responsible reactions that use the least amount of energy and toxic solvents. Finally, we present a case study that demonstrates how we successfully used these approaches to create a large number of new, useful electrode materials within the recently discovered family of transition metal fluorosulfates. This family has piqued the interest of researchers as a potential source of improved Li-ion batteries in larger-scale applications, and it benefits from a relatively "green" synthesis.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer