抽象的

Membrane Thickness and Charged Protein-Lipid Interactions

Alena Johnson


Charged amino acids are known to influence the functions of integral and peripheral membrane proteins, as well as cell disrupting peptides. Despite the fact that atomistic molecular dynamics studies have given light on the mechanics of charged protein group membrane binding and translocation, the impact of the full range of membrane Physio-chemical properties and topologies has yet to be addressed. In this research, we looked at how an Arginine (Arg) side chain analogue moved through saturated phosphatidylcholine (PC) bilayers with hydrocarbon tail lengths ranging from 10 to 18 carbons. The free energy profiles all exhibit sharp climbs as penetration into the hydrocarbon core increases, with predictable shifts between bilayers of various thickness, culminating in a barrier reduction from 26 kcal/mol for 18 carbons to 6 kcal/mol for 10 carbons.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • 学术文章影响因子(SAJI))
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer