抽象的

Microstructure and hardness of a low-chromiumcobalt-based alloy reinforced by tantalumcarbides destined to chromiumpack-cementation

Patrice Berthod, Elodie Conrath


Lowchromiumcontents allow obtaining improved refractoriness in alloys, the chromia-forming behaviour of which being kept thanks to later Cr packcementation treatment on surface. The purpose of this work is to explore the microstructure of a {tantalumcarbides}-reinforced cobalt-based alloys the bulk chromium content of which is particularly low to maximize its refractoriness and then its potential of creep-resistance. Thermodynamic calculations were first performed to study the theoretic microstructures at high temperature and to assess the gain in solidus temperature which can be expected by lowering the chromiumcontent.Areal alloywith 0.3 wt.%C, 5 wt.%Ta only 5 wt.%Cr was then elaborated by induction foundry in inert atmosphere, for examining its microstructure and to evaluating its machinability by measuring its macro- and micro-hardness. The as-cast microstructure shows a double-phased state: matrix and eutectic tantalum carbides, the later ones having kept a script-like morphology known to be favourable to high strength at high temperature. A rather high level of hardness is also kept, but a little decreased by comparison with same earlier studied cobalt alloys with 30 wt.%Cr.No chromiumcarbides able to perturb the pack-cementation were seen in the microstructure.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer