抽象的

On Thermally Controlled Light Propagation in Plasmonics Waveguide and Filter

Dong Liu, Mehdi Afshari-Bavil, Nader Daneshfar


An active ultra-compact plasmonic waveguide composed of a subwavelength slit and perforated in Vanadium Dioxide (VO2) followed by a metallic layer is proposed and numerically analyzed. Refractive index variation of VO2 by external stimuli provides a feasible way for tuning the optical properties of the waveguide. Varying the refractive index of VO2 corresponds with changing the phase of VO2 to the metallic state (“on” state). Consequently, the entire structure becomes a typical Metal-Insulator-Metal (MIM) waveguide that routes the incident light through the slit. In addition, during the “off” state, the incident light thereby propagates in the slit and VO2 medium and mitigates rapidly. By adding a MIM waveguide attached to the Fabry-Perot (FP) cavity, spectrally wide stopband and passband filtering features in the telecommunication frequency regime are demonstrated. Tailoring the resonance wavelength can be performed through the geometrical parameters. Such active plasmonic waveguides with high transmission, coupling, and compact size can be utilized in future fully integrated all plasmonic chip technology


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • 学术文章影响因子(SAJI))
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer