抽象的

Optimization of Adsorption Parameters for Effective Removal of Lead (II) from Aqueous Solution

Jonas Bayuo, Kenneth Bayetimani Pelig-Ba and Moses Abdullai Abukari


In this study, groundnut shell was used as an adsorbent to remove lead (II) ions in an aqueous solution. Response Surface Methodology (RSM) was employed for the modeling and optimization of adsorption of lead (II) ion onto groundnut shell. The effects of three adsorption variables (contact time, pH as well as initial metal ion concentration) on two response variables (removal efficiency and adsorption capacity) were investigated using Central Composite Design (CCD), which is a subset of the Response Surface Methodology. Numerical optimization applying desirability function was used to identify the optimum conditions for a maximum removal efficiency and adsorption capacity of lead (II) ions onto the groundnut shell. The optimum operating condition for the adsorption of Pb (II) was found to be contact time of 90 min, pH of 8 and initial concentration of 75 mg/L with the desirability of 0.966. The maximum removal efficiency and adsorption capacity of Pb (II) ions under this operating condition were found to be 90.26% and 3.428 mg/g respectively. The equilibrium adsorption isotherm and kinetic studies showed that Langmuir isotherm and pseudo-second-order kinetic model fitted well to the experimental data. The characterization studies were performed using Fourier Transform Infrared Spectrometer (FT-IR) and Scanning Electron Microscope (SEM).


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer