抽象的

Prediction of Drag Coefficient of Spherical Particle Using ANN, ANFIS, Regression and GA Optimization

Saroj Kumar Samantaray, Siddharth Sekhar Sahoo, Soumya Sanjeeb Mohapatra and Basudeb Munshi


The present work includes the successful prediction of the experimental drag coefficients (CD) as function Reynolds number (Re), collected from the open source literatures by regression analysis method, Artificial intelligence models i.e. artificial neural network (ANN), adaptive Neuro fuzzy interface system (ANFIS) and Genetic Algorithm (GA). A non-linear equation is assumed to relate drag coefficient and Reynolds number and optimized using GA. To confirm the predicted output, twenty-one numbers of inputs are tested and simulated. The comparative study of the prediction models is carried out in terms of the error functions and coefficient of determination. This study has revealed that ANFIS neural model has predicted the desired drag coefficient with minimal error and high coefficient of determination and outperformed the rest prediction models.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer