抽象的

Representing structure formation in the early universe as a result of non linear electrodynamics influencing scale factor size

Andrew Walcott Beckwith


We find that having the scale factor close to zero due to a given magnetic field value in, an early universe magnetic field affects how we would interpret Mukhanov’s chapter on ‘self reproduction of the universe’ in in his reference “Physical foundations of cosmology” terms of production of inhomogeneity during inflation and its aftermath. The stronger an early universe magnetic field is, the greater the likelihood of production of about 20 new domains of size 1/ H, with H early universe Hubble’s constant, per Planck time interval in evolution. One final caveat to consider. What may happen is that the Camara (2004) density and Quintessential density (Corda et al.) are both simultaneously satisfied, which would put additional restrictions on the magnetic field which in turn affects structure formation. In time, once Eq.(16) of this paper is refined further, the author hopes that some of the issues raised by Kobayashi and Seto as to allowed inflation models may be addressed, once further refinement of these preliminary results commences. We close as to how fluctuations in the Hubble expansion parameter, H, as given below may affect structure as given in reference[10] below.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer