抽象的

Research on the application of the brain-computer interface based on electrocorticographic signals

Yue Chen, Shaobai Zhang


Brain–computer interfaces (BCIs) enable users to control devices with electroencephalographic (EEG) activity from the scalp or with singleneuron activity from within the brain. Both methods have disadvantages: EEG has limited resolution and requires extensive training, while singleneuron recording entails significant clinical risks and has limited stability. In the light of these problems, the electrocorticographic (ECoG) signals recorded from the surface of the brain can enable users to control a onedimensional computer cursor rapidly and accurately. The classification MATLAB experiment of themotor imagery of the left little fingure and the tongue has reached a high classification accuracy of 94%. This result reveals that compared to the EEG signals, ECoG signals can accurately locate the function cortex and avoid the changes of amplitude, frequency and phase at the same time. In addition, our results suggest that an ECoGbased BCI could provide for people with severe motor disabilities a nonmuscular communication and control option that is more powerful and effective than EEG-based BCIs in the two- dimensional joystick movements.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer