抽象的

Response surface optimization of enzyme-assisted extraction of total flavonoids fromwisteria and study on hydroxyl radicals scavenging effect

LiHui-duan


The response surface methodology (RSM) and Box-Benhnken Design (BBD) were employed to optimize the extraction conditions of total flavonoids from Wisteria. The hydroxyl radicals scavenging and inactivity scavenging and inhibiting effect of Wisteria total flavonoids were also studied in this paper. The total flavonoids were extracted from Wisteria neck, leaf, flower and fruit clip by using enzyme-assisted ethanol refluxing. According to the single-factor experimental results, Enzyme concentration of 0.15~0.25mg·mL-1, enzymatic pH of 5 ~ 7, enzymatic temperature of 45 ~ 65! and enzymatic times of 1.5 ~ 2.5h were selected as the independent variables and scope for BBD. The preferred extract conditions optimized by RSM. Hydroxyl radicals scavenging and inhibiting effect of Wisteria extracts were also measured. The optimum extract conditions optimized by RSM and BBD were enzyme concentration of 0.23 mg·mL-1; enzymatic pH of 6, enzymatic temperature of 64 ! and times for 2.0h with responding extraction ratio of 0.94% for Wisteria neck, 4.60% for Wisteria leaf, 3.32% for Wisteria flowers and 5.16% for Wisteria fruit clip. The experimental extraction ratio matched well with the calculated values by solving the multiple regression equation. It confirms that the fitted quadratic model has a predictive effect on target extracts. The scavenging effect on hydroxyl radicals displayed a significant dose-effect relationship for Wisteria flavonoids, but it showed a weaker scavenging effect compare to BHT with the same concentration.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer