抽象的

Soil N2O Emission Rates and Meta-Analysis on the Tibetan Plateau: Effects of Heavy Degradation on Alpine Meadows

Gabriel Santos


The Tibetan Plateau has severe grassland degradation. On the Tibetan Plateau and in the southeast, atmospheric nitrous oxide (N2O) emission rates and their underlying cause are yet unknown. Gas chromatography at three river sources and meta-analysis techniques were used to examine the N2O emission rates of substantially degraded and undamaged alpine meadow soil incubation across the Tibetan Plateau. In the southeast Tibetan Plateau, the N2O emission rates of significantly deteriorated and control meadows were 4.29 gkg-1h-1 to 0.64 gkg-1h-1 and 3.27 g kg-1h-1 to 0.53 gkg-1h-1, respectively (p 0.01), showing an increase of 31.16% on the N2O flow of heavy degradation. N2O emission increased due to heavy deterioration. Rates using meta-analysis by 0.55-0.14 (95% confidence interval: 0.27-0.83). When compared to the control, high deterioration rose by around 71.6%. According to the moderator test, the Water-Filled Pore Space (WFPS) had a substantial impact on the N2O emission rate (p 0.05). The findings of the mixed-effect model showed that WFPS, soil nitrate, and bulk soil could each account for 59.90%, 16.56%, and 15.19% of the variance in N2O emission rates between the control and severely degraded meadows. In addition, by raising WFPS and bulk density, as well as by lowering the nitrate content of the soil, it is possible to lower the N2O emission rates of severely degraded meadows.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer