抽象的

Space-time perturbation effect upon rotating bodies on laminate layer branes

Morgan J.Boardman, John E.Brandenburg, Garett E.Volk


The experimental loss of weight in the Morningstar Energy Box may indicate that Poynting Vortices act upon a D-Dimension axis. This speculation implies that the weight loss is an effect upon gravity and/or an effect upon mass. This premise assumes that quantum gravity is part of the space-time manifold which is constantly fluctuating, and; that what we perceive as smooth and steady “space-time” is an average of these oscillations. The manifold can be considered to fluctuate not only in space-time but also in additional dimensionality. These perturbed quantum fluctuations access < D-4 dimensions. Normally, the contributions to particle mass changing from these variations into other D-4 dimensions can be considered negligible; however, we imagine in some circumstances, such as in the presence of Poynting vortices or turbulence, quantum fluctuations of space-time can be intensified. Particles would then spend proportionally more time on higher laminate branes, and appear to lose weight. The nonlinear field production of Poynting, magnetic and electrical fields, as it relates to space-time may be a way of understanding how Gravitational waves interact with electromagnetic waves, causing space-time turbulence to generate changes in weight that has implications on space propulsion schemes.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 米亚尔
  • 秘密搜索引擎实验室
  • 欧洲酒吧
  • 巴塞罗那大学
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer