抽象的

Spectral unmixing based on nonnegative matrix factorization restrained by minimizing the sum of the maximum distances between endmembers

Jun Xu, Fuhong Xu, Chunxiao Liu3Cailing Wang, Zhenhua Deng


The spectral signature of each hyperspectral image pixel commonly comprises the combined measured reflectance of components. These pixels are called mixed pixel. Spectral unmixing provides an efficient mechanism for the interpretation and classification of these mixed pixels. The algorithm of minimum volume constrained nonnegative matrix factorization (MVC-NMF) is a kind of algorithm which can extract endmembers from highly mixed hyperspectral images. It does not need to assume that pure pixels exist in hyperspectral images. Endmembers and its abundance can be obtained synchronously by this algorithm. However, the constraint condition of MVC-NMF algorithm need to calculate the volume of simplex, which cause the iterative process is complex and the amount of calculation is very large. This paper proposes a NMF algorithm under new constraint condition, which is restrained by minimizing the sum of all maximum distances between endmembers instead of minimizing simplex volume. Experimental results of spectral unmixing illustrate this new NMF algorithm has higher decomposition accuracy and efficiency than MVC-NMF algorithm.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • 欧洲酒吧
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer