抽象的

Statistically-Guided Optimization of the Catalysis of Cellulose Hydrolysis via Sulfamic Acid Functionalized Magnetic Iron/Iron(III) Oxide Core-Shell Nanoparticles

Ayomi SP, Hongwang W, Asanka SY, Austin B, Jose C, Feng Xu, Donghai W, and Stefan HB


Effective optimization of the degradation of cellulose into glucose, via a magnetic catalyst is achieved, for the first time, using statistically guided modification of reaction conditions. A highly efficient procedure for the large-scale synthesis of iron/iron(III) oxide (Fe/Fe3O4) magnetic nanoparticles (MNPs), functionalized with sulfamic acid, has been developed. The acid functionalized MNPs have been used successfully, as a heterogeneous catalyst in the hydrolysis of cellulose to glucose and other yeast-convertible sugars, with a cellulose conversion of >50%. Optimization of the reaction conditions for the catalytic reactions has been accomplished, via the Doehlert matrix statistical approach. The Catalyst has been recovered up to 82% of its original weight, over 20 reaction cycles, with only marginal losses of magnetic property and catalytic activity. Based on its’ robustness and efficiency, we propose that the above catalyst is an excellent candidate for the industrial production of ethanol from plant cellulose.


索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer