抽象的

Thermodynamic calculations describing the solidification of a {m,m�?�?�?�?�?�?�?�?}-based {30Cr, 1C, 15Ta} containing alloy and microstructure comparison with the alloy really elaborated. Part 2:{m,m�?�?�?�?�?�?�?�?}={Co,Fe}

Ga�?�?�?�?�?�?�?«l Pierson, Kevin Duretz, Patrice Berthod


In this second part of the work, an alloy based on Cobalt and Iron with similar contents, containing 30 wt.% Cr again as well as 1 wt.%C and 1 wt.%Ta for obtaining many TaC carbides, was the subject of preliminary thermodynamic calculations to get a description of its microstructure development from the molten state to the solid state at 500°C. A real alloy was thereafter produced by casting from pure elements to allow characterizing the microstructure really obtained. Thermodynamic calculations predicted that solidification should start here too by TaC carbides, before thematrix development itself. Thiswas effectively verified in the real alloy with the presence of blocky TaC carbides which are of a pro-eutectic nature. However some disagreements appeared concerning the chromiumcarbides notably, which were seen much more present in the real alloy than predicted by thermodynamic calculations. The limitation of the outwards migration of the pro-eutectic carbides was less understood than in the first part, since no so obvious relation between the solidification temperature range and the amount of blocky carbides in the ingot core was revealed. The Vickers hardness of the real alloy is of about 430 Hv30kg.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer