抽象的

Topological investigation of procrystal electron density to improve complicated solid-state ion conductor first-principles simulations

Daniel Jacobsen


 Designing high-performance solid-state ion conductors for a variety of electrochemical devices requires an atomic-level understanding of ion migration processes. In this endeavor, first-principles simulations are crucial. Although these techniques have limited access to complicated, low-symmetry structures like interfaces, they are typically computationally demanding. Here, we demonstrate how to effectively address this problem using topological analysis of the procrystal electron density. With the help of two instances, we explain how this technique exceeds the state of the art at the moment. We look into Li-ion transport across grain boundaries in Li3ClO electrolyte in the first. Then, we calculate the diffusion coefficients in the spinel LiTiS2 electrode material as a function of charge carrier concentration 


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer