抽象的

Ultrasonic-assisted synthesis and characterization of semiconductor CuO nanoparticles via decomposition of ethanedioate precursor

Ahmad Rahnama, Mehrnaz Gharagozlou


Semiconductor cupric oxide nanoparticles are of great interest due to their numerous applications in many important fields of science and technology such as pigments, semiconductors, sensors, catalysts and solar cells. In this work, nanoparticles of semiconductor cupric oxide with an average size of 52 nm have been successfully synthesized via ultrasonic-assisted thermal decomposition of the ethanedioate precursor at 400 °C. The nanoparticles were characterized by powderX-ray diffraction (XRD), FT-IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), colorimetric analysis (L*a*b* color parameters), diffuse reflectance spectroscopy and UV-Vis spectroscopy. Our results confirmed the formation of the pure single-phase monoclinic cupric oxide (space group C2/c) with the monoclinic structure. The FT-IR spectrum displays the typical vibration of cupric oxide at 536 cm-1. Also the optical absorption spectrum indicates that the cupric oxide nanoparticles have a direct band gap of 1.95 eV,which is larger than the reported value for the bulk cupric oxide (1.85 eV).


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 中国社会科学院
  • 谷歌学术
  • 打开 J 门
  • 中国知网(CNKI)
  • 引用因子
  • 宇宙IF
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • 秘密搜索引擎实验室
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer