抽象的

Antibacterial activity on newly developed nanotechnological coatings approved for food contact

Alessandro Di Cerbo


Aims and Objectives: One of the main concerns of the food industry is microbial adhesion to food contact surfaces and consequent contamination. Stainless steel and aluminum, widely present in food industry, are frequently exposed to bacterial colonization with possible consequences on consumers’ health. We aimed to evaluate the potential bacteriostatic/bactericidal efficacy of aluminum and stainless-steel surfaces with different large-scale roughness before and after the surface coating with two different nanotechnological coatings approved for food contact. Methods: Fifty hundred seventy-six disks of both stainless-steel (n = 288) and aluminum (n = 288) with different roughness (0.25, 0.5 and 1 μm) were challenged with four Gram-negative (Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 1402, Yersinia enterocolitica ATCC 9610 and Pseudomonas aeruginosa ATCC 27588) and four Gram-positive (Staphylococcus aureus ATCC 6538, Enterococcus faecalis ATCC 29212, Bacillus cereus ATCC 14579 and Listeria monocytogenes NCTT 10888) bacteria and underwent 3 different sanitizing treatments, e.g., UV, alcohol and a natural product named Gold lotion. After the first challenge all disks were then coated with two different nanotechnological coatings approved for food contact according to NSF and MOCA 1935/2004 named DURALTI® and NanoXHAM® D, respectively, and underwent the same sanitizing treatments. Results: As far as concerns aluminum surfaces without nanotechnological surface treatment, an overall bacteriostatic effect was observed for all strains with respect to the initial inoculum that was 106 CFU/mL. Conversely, an overall bactericidal effect was observed both for Gram-negative and -positive bacteria on DURALTI®-treated aluminum disks, regardless of roughness and sanitizing treatment. Conversely, on stainless-steel surfaces, a significant bactericidal effect was exerted by all of sanitizing treatments against all bacterial strains regardless of roughness and surface coating. The nanoXHAMï?? D coating itself induced an overall bactericidal effect as well as in synergy with all sanitizing treatments regardless of roughness.


免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

  • 谷歌学术
  • ICMJE

查看更多

期刊国际标准号

期刊 h 指数

Flyer